Dinajpur Govt. college, Dinajpur.
 Mathematics Tutorial Exam-2008
 THEORY OF NUMBERS

1. Decide whether the congruent $x^{2} \equiv 105(\bmod 317)$ is solvable or not.
2. If $s>1$ then $\zeta(s)=\prod_{P} \frac{1}{1-P^{-s}}$
3. Define Riemann zeta function. Prove that : $\frac{1}{h(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}, s>1$ [04]
4. Write down a formula for $\pi(x)-\pi(\sqrt{x})$ intenms of the primes upto \sqrt{x}, and use it to determine $\pi(100)$.
5. Define $\theta(x)$ and $\psi(x)$ with example. Show that $\psi(x)-\theta(x)<\frac{\sqrt{x}(\log x)^{2}}{2 \log l}$ [06]

Fluid Dynamics

6. Show that in the two dimensional motion of a liquid the stream function Ψ satisfies the equation $\left(\gamma \nabla^{2}-\frac{\partial}{\partial t}\right) \nabla^{2} \Psi=\frac{\partial\left(\Psi, \nabla^{2} \Psi\right)}{\partial(x, y)}[04]$
7. Show that for parallel flow through a straight channel the solution of Navier-Stoke's equation is given by $u=-\frac{1}{2 \mu} \frac{d p}{d x}\left(b^{2}-y^{2}\right)$ [05]
8. Show that for "Hagen-Poiseuille" flow the volume rate is $\frac{\pi a^{4}\left(p_{1}-p_{2}\right)}{8 \mu l}$. [05]
9. Show that the solutions for velocity and pressure in the case of very slow motions of a sphere in an incompressible viscous fluid is given by : $u=U_{0}\left[\frac{3 a x^{2}}{4 r^{3}}\left(\frac{a^{2}}{r^{2}}-1\right)+1-\frac{a}{4 r}\left(3+\frac{a^{2}}{r^{2}}\right)\right]$
10. Show that for creeping motion, $\nabla^{2} P=0, \nabla^{4} \Psi=0$

LATTICE THEORY

11. Prove that every convex sublattice of a lattice L is the intersection of an ideal and a dual ideal.
12. Two lattices L_{1} and L_{2} respectively are modular iff $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is modular.
13. State and prove minimax theorem.
14. A metric lattice L is distributive if and only if $\forall x, y, z \in L$; $v(x \vee y \vee z)-v(x \wedge y \wedge z)=v(x)+v(y)+v(z)-v(x \wedge y)-v(y \wedge z)-v(z \wedge x)$
15. Define a Boolean algebra. Show that in algebra B, (i) $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}(i i)(x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime}$

DIFFERENTIAL AND INTEGRAL EQUATIONS

16. Discuss the existence and uniqueness of a solution of the IVP $\frac{d y}{d x}=x y^{3}, y(0)=1$. Solve the IVP and fine the interval of existence.
17. Define and compute a fundamental matrix for the system $x_{1}^{\prime}=x_{1}-2 x_{2}-x_{3}, x_{2}^{\prime}=-x_{1}+x_{2}+x_{3}, x_{3}^{\prime}=x_{1}-x_{3}$.
18. Prove that the zero solution of $x^{\prime \prime}+x=0$ is uniformly stable, but not asymptotically stable.
19. Show that $\phi(x)=x e^{x}$ is a solution of the VIE $\phi(x)=\sin x+2 \int \cos (x-\xi) \phi(\xi) d \xi$
20. Solve : $x^{\prime}(t)=\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right) x(t)+\binom{1}{t}, x(0)=\binom{1}{-1}$
